This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
merge_asof() for asof-style time-series joining, see here
merge_asof()
.rolling() is now time-series aware, see here
.rolling()
read_csv() now supports parsing Categorical data, see here
read_csv()
Categorical
A function union_categorical() has been added for combining categoricals, see here
union_categorical()
PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes. See here
PeriodIndex
period
Index
Sparse data structures gained enhanced support of int and bool dtypes, see here
int
bool
Comparison operations with Series no longer ignores the index, see here for an overview of the API changes.
Series
Introduction of a pandas development API for utility functions, see here.
Deprecation of Panel4D and PanelND. We recommend to represent these types of n-dimensional data with the xarray package.
Panel4D
PanelND
Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.rplot.
pandas.io.data
pandas.io.wb
pandas.tools.rplot
Warning
pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.
What’s new in v0.19.0
New features
merge_asof for asof-style time-series joining
merge_asof
.rolling() is now time-series aware
read_csv has improved support for duplicate column names
read_csv
read_csv supports parsing Categorical directly
Categorical concatenation
Semi-month offsets
New Index methods
Google BigQuery Enhancements
Fine-grained numpy errstate
get_dummies now returns integer dtypes
get_dummies
Downcast values to smallest possible dtype in to_numeric
to_numeric
pandas development API
Other enhancements
API changes
Series.tolist() will now return Python types
Series.tolist()
Series operators for different indexes
Arithmetic operators
Comparison operators
Logical operators
Flexible comparison methods
Series type promotion on assignment
.to_datetime() changes
.to_datetime()
Merging changes
.describe() changes
.describe()
Period changes
Period
PeriodIndex now has period dtype
Period('NaT') now returns pd.NaT
Period('NaT')
pd.NaT
PeriodIndex.values now returns array of Period object
PeriodIndex.values
Index + / - no longer used for set operations
+
-
Index.difference and .symmetric_difference changes
Index.difference
.symmetric_difference
Index.unique consistently returns Index
Index.unique
MultiIndex constructors, groupby and set_index preserve categorical dtypes
MultiIndex
groupby
set_index
read_csv will progressively enumerate chunks
Sparse Changes
int64 and bool support enhancements
int64
Operators now preserve dtypes
Other sparse fixes
Indexer dtype changes
Other API changes
Deprecations
Removal of prior version deprecations/changes
Performance improvements
Bug fixes
Contributors
A long-time requested feature has been added through the merge_asof() function, to support asof style joining of time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is here.
The merge_asof() performs an asof merge, which is similar to a left-join except that we match on nearest key rather than equal keys.
In [1]: left = pd.DataFrame({'a': [1, 5, 10], ...: 'left_val': ['a', 'b', 'c']}) ...: In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ...: 'right_val': [1, 2, 3, 6, 7]}) ...: In [3]: left Out[3]: a left_val 0 1 a 1 5 b 2 10 c [3 rows x 2 columns] In [4]: right Out[4]: a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 [5 rows x 2 columns]
We typically want to match exactly when possible, and use the most recent value otherwise.
In [5]: pd.merge_asof(left, right, on='a') Out[5]: a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 [3 rows x 3 columns]
We can also match rows ONLY with prior data, and not an exact match.
In [6]: pd.merge_asof(left, right, on='a', allow_exact_matches=False) Out[6]: a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 [3 rows x 3 columns]
In a typical time-series example, we have trades and quotes and we want to asof-join them. This also illustrates using the by parameter to group data before merging.
trades
quotes
asof-join
by
In [7]: trades = pd.DataFrame({ ...: 'time': pd.to_datetime(['20160525 13:30:00.023', ...: '20160525 13:30:00.038', ...: '20160525 13:30:00.048', ...: '20160525 13:30:00.048', ...: '20160525 13:30:00.048']), ...: 'ticker': ['MSFT', 'MSFT', ...: 'GOOG', 'GOOG', 'AAPL'], ...: 'price': [51.95, 51.95, ...: 720.77, 720.92, 98.00], ...: 'quantity': [75, 155, ...: 100, 100, 100]}, ...: columns=['time', 'ticker', 'price', 'quantity']) ...: In [8]: quotes = pd.DataFrame({ ...: 'time': pd.to_datetime(['20160525 13:30:00.023', ...: '20160525 13:30:00.023', ...: '20160525 13:30:00.030', ...: '20160525 13:30:00.041', ...: '20160525 13:30:00.048', ...: '20160525 13:30:00.049', ...: '20160525 13:30:00.072', ...: '20160525 13:30:00.075']), ...: 'ticker': ['GOOG', 'MSFT', 'MSFT', 'MSFT', ...: 'GOOG', 'AAPL', 'GOOG', 'MSFT'], ...: 'bid': [720.50, 51.95, 51.97, 51.99, ...: 720.50, 97.99, 720.50, 52.01], ...: 'ask': [720.93, 51.96, 51.98, 52.00, ...: 720.93, 98.01, 720.88, 52.03]}, ...: columns=['time', 'ticker', 'bid', 'ask']) ...:
In [9]: trades Out[9]: time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 [5 rows x 4 columns] In [10]: quotes Out[10]: time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 [8 rows x 4 columns]
An asof merge joins on the on, typically a datetimelike field, which is ordered, and in this case we are using a grouper in the by field. This is like a left-outer join, except that forward filling happens automatically taking the most recent non-NaN value.
on
In [11]: pd.merge_asof(trades, quotes, ....: on='time', ....: by='ticker') ....: Out[11]: time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN [5 rows x 6 columns]
This returns a merged DataFrame with the entries in the same order as the original left passed DataFrame (trades in this case), with the fields of the quotes merged.
.rolling() objects are now time-series aware and can accept a time-series offset (or convertible) for the window argument (GH13327, GH12995). See the full documentation here.
window
In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index=pd.date_range('20130101 09:00:00', ....: periods=5, freq='s')) ....: In [13]: dft Out[13]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 2.0 2013-01-01 09:00:03 NaN 2013-01-01 09:00:04 4.0 [5 rows x 1 columns]
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [14]: dft.rolling(2).sum() Out[14]: B 2013-01-01 09:00:00 NaN 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 NaN 2013-01-01 09:00:04 NaN [5 rows x 1 columns] In [15]: dft.rolling(2, min_periods=1).sum() Out[15]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:04 4.0 [5 rows x 1 columns]
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [16]: dft.rolling('2s').sum() Out[16]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:04 4.0 [5 rows x 1 columns]
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [17]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index=pd.Index([pd.Timestamp('20130101 09:00:00'), ....: pd.Timestamp('20130101 09:00:02'), ....: pd.Timestamp('20130101 09:00:03'), ....: pd.Timestamp('20130101 09:00:05'), ....: pd.Timestamp('20130101 09:00:06')], ....: name='foo')) ....: In [18]: dft Out[18]: B foo 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 [5 rows x 1 columns] In [19]: dft.rolling(2).sum() Out[19]: B foo 2013-01-01 09:00:00 NaN 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 NaN [5 rows x 1 columns]
Using the time-specification generates variable windows for this sparse data.
In [20]: dft.rolling('2s').sum() Out[20]: B foo 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 [5 rows x 1 columns]
Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a DataFrame.
In [21]: dft = dft.reset_index() In [22]: dft Out[22]: foo B 0 2013-01-01 09:00:00 0.0 1 2013-01-01 09:00:02 1.0 2 2013-01-01 09:00:03 2.0 3 2013-01-01 09:00:05 NaN 4 2013-01-01 09:00:06 4.0 [5 rows x 2 columns] In [23]: dft.rolling('2s', on='foo').sum() Out[23]: foo B 0 2013-01-01 09:00:00 0.0 1 2013-01-01 09:00:02 1.0 2 2013-01-01 09:00:03 3.0 3 2013-01-01 09:00:05 NaN 4 2013-01-01 09:00:06 4.0 [5 rows x 2 columns]
Duplicate column names are now supported in read_csv() whether they are in the file or passed in as the names parameter (GH7160, GH9424)
names
In [24]: data = '0,1,2\n3,4,5' In [25]: names = ['a', 'b', 'a']
Previous behavior:
In [2]: pd.read_csv(StringIO(data), names=names) Out[2]: a b a 0 2 1 2 1 5 4 5
The first a column contained the same data as the second a column, when it should have contained the values [0, 3].
a
[0, 3]
New behavior:
In [26]: pd.read_csv(StringIO(data), names=names) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-26-a095135d9435> in <module> ----> 1 pd.read_csv(StringIO(data), names=names) ~/Documents/repositories/pandas/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision) 673 ) 674 --> 675 return _read(filepath_or_buffer, kwds) 676 677 parser_f.__name__ = name ~/Documents/repositories/pandas/pandas/io/parsers.py in _read(filepath_or_buffer, kwds) 443 444 # Check for duplicates in names. --> 445 _validate_names(kwds.get("names", None)) 446 447 # Create the parser. ~/Documents/repositories/pandas/pandas/io/parsers.py in _validate_names(names) 411 if names is not None: 412 if len(names) != len(set(names)): --> 413 raise ValueError("Duplicate names are not allowed.") 414 415 ValueError: Duplicate names are not allowed.
The read_csv() function now supports parsing a Categorical column when specified as a dtype (GH10153). Depending on the structure of the data, this can result in a faster parse time and lower memory usage compared to converting to Categorical after parsing. See the io docs here.
In [27]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3' In [28]: pd.read_csv(StringIO(data)) Out[28]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 [3 rows x 3 columns] In [29]: pd.read_csv(StringIO(data)).dtypes Out[29]: col1 object col2 object col3 int64 Length: 3, dtype: object In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes Out[30]: col1 category col2 category col3 category Length: 3, dtype: object
Individual columns can be parsed as a Categorical using a dict specification
In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes Out[31]: col1 category col2 object col3 int64 Length: 3, dtype: object
Note
The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the to_numeric() function, or as appropriate, another converter such as to_datetime().
to_numeric()
to_datetime()
In [32]: df = pd.read_csv(StringIO(data), dtype='category') In [33]: df.dtypes Out[33]: col1 category col2 category col3 category Length: 3, dtype: object In [34]: df['col3'] Out[34]: 0 1 1 2 2 3 Name: col3, Length: 3, dtype: category Categories (3, object): [1, 2, 3] In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories) In [36]: df['col3'] Out[36]: 0 1 1 2 2 3 Name: col3, Length: 3, dtype: category Categories (3, int64): [1, 2, 3]
A function union_categoricals() has been added for combining categoricals, see Unioning Categoricals (GH13361, GH13763, GH13846, GH14173)
union_categoricals()
In [37]: from pandas.api.types import union_categoricals In [38]: a = pd.Categorical(["b", "c"]) In [39]: b = pd.Categorical(["a", "b"]) In [40]: union_categoricals([a, b]) Out[40]: [b, c, a, b] Categories (3, object): [b, c, a]
concat and append now can concat category dtypes with different categories as object dtype (GH13524)
concat
append
category
categories
object
In [41]: s1 = pd.Series(['a', 'b'], dtype='category') In [42]: s2 = pd.Series(['b', 'c'], dtype='category')
In [1]: pd.concat([s1, s2]) ValueError: incompatible categories in categorical concat
In [43]: pd.concat([s1, s2]) Out[43]: 0 a 1 b 0 b 1 c Length: 4, dtype: object
Pandas has gained new frequency offsets, SemiMonthEnd (‘SM’) and SemiMonthBegin (‘SMS’). These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively. (GH1543)
SemiMonthEnd
SemiMonthBegin
In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
In [45]: pd.Timestamp('2016-01-01') + SemiMonthEnd() Out[45]: Timestamp('2016-01-15 00:00:00') In [46]: pd.date_range('2015-01-01', freq='SM', periods=4) Out[46]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')
SemiMonthBegin:
In [47]: pd.Timestamp('2016-01-01') + SemiMonthBegin() Out[47]: Timestamp('2016-01-15 00:00:00') In [48]: pd.date_range('2015-01-01', freq='SMS', periods=4) Out[48]: DatetimeIndex(['2015-01-01', '2015-01-15', '2015-02-01', '2015-02-15'], dtype='datetime64[ns]', freq='SMS-15')
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
In [49]: pd.date_range('2015-01-01', freq='SMS-16', periods=4) Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16') In [50]: pd.date_range('2015-01-01', freq='SM-14', periods=4) Out[50]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')
The following methods and options are added to Index, to be more consistent with the Series and DataFrame API.
DataFrame
Index now supports the .where() function for same shape indexing (GH13170)
.where()
In [51]: idx = pd.Index(['a', 'b', 'c']) In [52]: idx.where([True, False, True]) Out[52]: Index(['a', nan, 'c'], dtype='object')
Index now supports .dropna() to exclude missing values (GH6194)
.dropna()
In [53]: idx = pd.Index([1, 2, np.nan, 4]) In [54]: idx.dropna() Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')
For MultiIndex, values are dropped if any level is missing by default. Specifying how='all' only drops values where all levels are missing.
how='all'
In [55]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4], ....: [1, 2, np.nan, np.nan]]) ....: In [56]: midx Out[56]: MultiIndex([(1.0, 1.0), (2.0, 2.0), (nan, nan), (4.0, nan)], ) In [57]: midx.dropna() Out[57]: MultiIndex([(1, 1), (2, 2)], ) In [58]: midx.dropna(how='all') Out[58]: MultiIndex([(1, 1.0), (2, 2.0), (4, nan)], )
Index now supports .str.extractall() which returns a DataFrame, see the docs here (GH10008, GH13156)
.str.extractall()
In [59]: idx = pd.Index(["a1a2", "b1", "c1"]) In [60]: idx.str.extractall(r"[ab](?P<digit>\d)") Out[60]: digit match 0 0 1 1 2 1 0 1 [3 rows x 1 columns]
Index.astype() now accepts an optional boolean argument copy, which allows optional copying if the requirements on dtype are satisfied (GH13209)
Index.astype()
copy
The read_gbq() method has gained the dialect argument to allow users to specify whether to use BigQuery’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).
read_gbq()
dialect
The to_gbq() method now allows the DataFrame column order to differ from the destination table schema (GH11359).
to_gbq()
Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported. Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaN s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the numpy.errstate context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas code base. (GH13109, GH13145)
pandas
NaN
numpy.errstate
After upgrading pandas, you may see new RuntimeWarnings being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use numpy.errstate around the source of the RuntimeWarning to control how these conditions are handled.
RuntimeWarnings
RuntimeWarning
The pd.get_dummies function now returns dummy-encoded columns as small integers, rather than floats (GH8725). This should provide an improved memory footprint.
pd.get_dummies
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes Out[1]: a float64 b float64 c float64 dtype: object
In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes Out[61]: a uint8 b uint8 c uint8 Length: 3, dtype: object
pd.to_numeric() now accepts a downcast parameter, which will downcast the data if possible to smallest specified numerical dtype (GH13352)
pd.to_numeric()
downcast
In [62]: s = ['1', 2, 3] In [63]: pd.to_numeric(s, downcast='unsigned') Out[63]: array([1, 2, 3], dtype=uint8) In [64]: pd.to_numeric(s, downcast='integer') Out[64]: array([1, 2, 3], dtype=int8)
As part of making pandas API more uniform and accessible in the future, we have created a standard sub-package of pandas, pandas.api to hold public API’s. We are starting by exposing type introspection functions in pandas.api.types. More sub-packages and officially sanctioned API’s will be published in future versions of pandas (GH13147, GH13634)
pandas.api
pandas.api.types
The following are now part of this API:
In [65]: import pprint In [66]: from pandas.api import types In [67]: funcs = [f for f in dir(types) if not f.startswith('_')] In [68]: pprint.pprint(funcs) ['CategoricalDtype', 'DatetimeTZDtype', 'IntervalDtype', 'PeriodDtype', 'infer_dtype', 'is_array_like', 'is_bool', 'is_bool_dtype', 'is_categorical', 'is_categorical_dtype', 'is_complex', 'is_complex_dtype', 'is_datetime64_any_dtype', 'is_datetime64_dtype', 'is_datetime64_ns_dtype', 'is_datetime64tz_dtype', 'is_dict_like', 'is_dtype_equal', 'is_extension_array_dtype', 'is_extension_type', 'is_file_like', 'is_float', 'is_float_dtype', 'is_hashable', 'is_int64_dtype', 'is_integer', 'is_integer_dtype', 'is_interval', 'is_interval_dtype', 'is_iterator', 'is_list_like', 'is_named_tuple', 'is_number', 'is_numeric_dtype', 'is_object_dtype', 'is_period_dtype', 'is_re', 'is_re_compilable', 'is_scalar', 'is_signed_integer_dtype', 'is_sparse', 'is_string_dtype', 'is_timedelta64_dtype', 'is_timedelta64_ns_dtype', 'is_unsigned_integer_dtype', 'pandas_dtype', 'union_categoricals']
Calling these functions from the internal module pandas.core.common will now show a DeprecationWarning (GH13990)
pandas.core.common
DeprecationWarning
Timestamp can now accept positional and keyword parameters similar to datetime.datetime() (GH10758, GH11630)
Timestamp
datetime.datetime()
In [69]: pd.Timestamp(2012, 1, 1) Out[69]: Timestamp('2012-01-01 00:00:00') In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30) Out[70]: Timestamp('2012-01-01 08:30:00')
The .resample() function now accepts a on= or level= parameter for resampling on a datetimelike column or MultiIndex level (GH13500)
.resample()
on=
level=
In [71]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5), ....: 'a': np.arange(5)}, ....: index=pd.MultiIndex.from_arrays([[1, 2, 3, 4, 5], ....: pd.date_range('2015-01-01', ....: freq='W', ....: periods=5) ....: ], names=['v', 'd'])) ....: In [72]: df Out[72]: date a v d 1 2015-01-04 2015-01-04 0 2 2015-01-11 2015-01-11 1 3 2015-01-18 2015-01-18 2 4 2015-01-25 2015-01-25 3 5 2015-02-01 2015-02-01 4 [5 rows x 2 columns] In [73]: df.resample('M', on='date').sum() Out[73]: a date 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns] In [74]: df.resample('M', level='d').sum() Out[74]: a d 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns]
The .get_credentials() method of GbqConnector can now first try to fetch the application default credentials. See the docs for more details (GH13577).
.get_credentials()
GbqConnector
The .tz_localize() method of DatetimeIndex and Timestamp has gained the errors keyword, so you can potentially coerce nonexistent timestamps to NaT. The default behavior remains to raising a NonExistentTimeError (GH13057)
.tz_localize()
DatetimeIndex
errors
NaT
NonExistentTimeError
.to_hdf/read_hdf() now accept path objects (e.g. pathlib.Path, py.path.local) for the file path (GH11773)
.to_hdf/read_hdf()
pathlib.Path
py.path.local
The pd.read_csv() with engine='python' has gained support for the decimal (GH12933), na_filter (GH13321) and the memory_map option (GH13381).
pd.read_csv()
engine='python'
decimal
na_filter
memory_map
Consistent with the Python API, pd.read_csv() will now interpret +inf as positive infinity (GH13274)
+inf
The pd.read_html() has gained support for the na_values, converters, keep_default_na options (GH13461)
pd.read_html()
na_values
converters
keep_default_na
Categorical.astype() now accepts an optional boolean argument copy, effective when dtype is categorical (GH13209)
Categorical.astype()
DataFrame has gained the .asof() method to return the last non-NaN values according to the selected subset (GH13358)
.asof()
The DataFrame constructor will now respect key ordering if a list of OrderedDict objects are passed in (GH13304)
OrderedDict
pd.read_html() has gained support for the decimal option (GH12907)
Series has gained the properties .is_monotonic, .is_monotonic_increasing, .is_monotonic_decreasing, similar to Index (GH13336)
.is_monotonic
.is_monotonic_increasing
.is_monotonic_decreasing
DataFrame.to_sql() now allows a single value as the SQL type for all columns (GH11886).
DataFrame.to_sql()
Series.append now supports the ignore_index option (GH13677)
Series.append
ignore_index
.to_stata() and StataWriter can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536)
.to_stata()
StataWriter
.to_stata() and StataWriter will automatically convert datetime64[ns] columns to Stata format %tc, rather than raising a ValueError (GH12259)
datetime64[ns]
%tc
ValueError
read_stata() and StataReader raise with a more explicit error message when reading Stata files with repeated value labels when convert_categoricals=True (GH13923)
read_stata()
StataReader
convert_categoricals=True
DataFrame.style will now render sparsified MultiIndexes (GH11655)
DataFrame.style
DataFrame.style will now show column level names (e.g. DataFrame.columns.names) (GH13775)
DataFrame.columns.names
DataFrame has gained support to re-order the columns based on the values in a row using df.sort_values(by='...', axis=1) (GH10806)
df.sort_values(by='...', axis=1)
In [75]: df = pd.DataFrame({'A': [2, 7], 'B': [3, 5], 'C': [4, 8]}, ....: index=['row1', 'row2']) ....: In [76]: df Out[76]: A B C row1 2 3 4 row2 7 5 8 [2 rows x 3 columns] In [77]: df.sort_values(by='row2', axis=1) Out[77]: B A C row1 3 2 4 row2 5 7 8 [2 rows x 3 columns]
Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH13746)
to_html() now has a border argument to control the value in the opening <table> tag. The default is the value of the html.border option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).
to_html()
border
<table>
html.border
Raise ImportError in the sql functions when sqlalchemy is not installed and a connection string is used (GH11920).
ImportError
sqlalchemy
Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)
Timestamp, Period, DatetimeIndex, PeriodIndex and .dt accessor have gained a .is_leap_year property to check whether the date belongs to a leap year. (GH13727)
.dt
.is_leap_year
astype() will now accept a dict of column name to data types mapping as the dtype argument. (GH12086)
astype()
dtype
The pd.read_json and DataFrame.to_json has gained support for reading and writing json lines with lines option see Line delimited json (GH9180)
pd.read_json
DataFrame.to_json
lines
read_excel() now supports the true_values and false_values keyword arguments (GH13347)
read_excel()
groupby() will now accept a scalar and a single-element list for specifying level on a non-MultiIndex grouper. (GH13907)
groupby()
level
Non-convertible dates in an excel date column will be returned without conversion and the column will be object dtype, rather than raising an exception (GH10001).
pd.Timedelta(None) is now accepted and will return NaT, mirroring pd.Timestamp (GH13687)
pd.Timedelta(None)
pd.Timestamp
pd.read_stata() can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH11526)
pd.read_stata()
Series and Index now support divmod which will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH14208).
divmod
Series.tolist() will now return Python types in the output, mimicking NumPy .tolist() behavior (GH10904)
.tolist()
In [78]: s = pd.Series([1, 2, 3])
In [7]: type(s.tolist()[0]) Out[7]: <class 'numpy.int64'>
In [79]: type(s.tolist()[0]) Out[79]: int
Following Series operators have been changed to make all operators consistent, including DataFrame (GH1134, GH4581, GH13538)
Series comparison operators now raise ValueError when index are different.
index
Series logical operators align both index of left and right hand side.
Until 0.18.1, comparing Series with the same length, would succeed even if the .index are different (the result ignores .index). As of 0.19.0, this will raises ValueError to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like .eq.
.index
.eq
As a result, Series and DataFrame operators behave as below:
Arithmetic operators align both index (no changes).
In [80]: s1 = pd.Series([1, 2, 3], index=list('ABC')) In [81]: s2 = pd.Series([2, 2, 2], index=list('ABD')) In [82]: s1 + s2 Out[82]: A 3.0 B 4.0 C NaN D NaN Length: 4, dtype: float64 In [83]: df1 = pd.DataFrame([1, 2, 3], index=list('ABC')) In [84]: df2 = pd.DataFrame([2, 2, 2], index=list('ABD')) In [85]: df1 + df2 Out[85]: 0 A 3.0 B 4.0 C NaN D NaN [4 rows x 1 columns]
Comparison operators raise ValueError when .index are different.
Previous behavior (Series):
Series compared values ignoring the .index as long as both had the same length:
In [1]: s1 == s2 Out[1]: A False B True C False dtype: bool
New behavior (Series):
In [2]: s1 == s2 Out[2]: ValueError: Can only compare identically-labeled Series objects
To achieve the same result as previous versions (compare values based on locations ignoring .index), compare both .values.
.values
In [86]: s1.values == s2.values Out[86]: array([False, True, False])
If you want to compare Series aligning its .index, see flexible comparison methods section below:
In [87]: s1.eq(s2) Out[87]: A False B True C False D False Length: 4, dtype: bool
Current behavior (DataFrame, no change):
In [3]: df1 == df2 Out[3]: ValueError: Can only compare identically-labeled DataFrame objects
Logical operators align both .index of left and right hand side.
Previous behavior (Series), only left hand side index was kept:
In [4]: s1 = pd.Series([True, False, True], index=list('ABC')) In [5]: s2 = pd.Series([True, True, True], index=list('ABD')) In [6]: s1 & s2 Out[6]: A True B False C False dtype: bool
In [88]: s1 = pd.Series([True, False, True], index=list('ABC')) In [89]: s2 = pd.Series([True, True, True], index=list('ABD')) In [90]: s1 & s2 Out[90]: A True B False C False D False Length: 4, dtype: bool
Series logical operators fill a NaN result with False.
False
To achieve the same result as previous versions (compare values based on only left hand side index), you can use reindex_like:
reindex_like
In [91]: s1 & s2.reindex_like(s1) Out[91]: A True B False C False Length: 3, dtype: bool
In [92]: df1 = pd.DataFrame([True, False, True], index=list('ABC')) In [93]: df2 = pd.DataFrame([True, True, True], index=list('ABD')) In [94]: df1 & df2 Out[94]: 0 A True B False C False D False [4 rows x 1 columns]
Series flexible comparison methods like eq, ne, le, lt, ge and gt now align both index. Use these operators if you want to compare two Series which has the different index.
eq
ne
le
lt
ge
gt
In [95]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c']) In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd']) In [97]: s1.eq(s2) Out[97]: a False b True c False d False Length: 4, dtype: bool In [98]: s1.ge(s2) Out[98]: a False b True c True d False Length: 4, dtype: bool
Previously, this worked the same as comparison operators (see above).
A Series will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)
In [99]: s = pd.Series()
In [2]: s["a"] = pd.Timestamp("2016-01-01") In [3]: s["b"] = 3.0 TypeError: invalid type promotion
In [100]: s["a"] = pd.Timestamp("2016-01-01") In [101]: s["b"] = 3.0 In [102]: s Out[102]: a 2016-01-01 00:00:00 b 3 Length: 2, dtype: object In [103]: s.dtype Out[103]: dtype('O')
Previously if .to_datetime() encountered mixed integers/floats and strings, but no datetimes with errors='coerce' it would convert all to NaT.
errors='coerce'
In [2]: pd.to_datetime([1, 'foo'], errors='coerce') Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
Current behavior:
This will now convert integers/floats with the default unit of ns.
ns
In [104]: pd.to_datetime([1, 'foo'], errors='coerce') Out[104]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype='datetime64[ns]', freq=None)
Bug fixes related to .to_datetime():
Bug in pd.to_datetime() when passing integers or floats, and no unit and errors='coerce' (GH13180).
pd.to_datetime()
unit
Bug in pd.to_datetime() when passing invalid data types (e.g. bool); will now respect the errors keyword (GH13176)
Bug in pd.to_datetime() which overflowed on int8, and int16 dtypes (GH13451)
int8
int16
Bug in pd.to_datetime() raise AttributeError with NaN and the other string is not valid when errors='ignore' (GH12424)
AttributeError
errors='ignore'
Bug in pd.to_datetime() did not cast floats correctly when unit was specified, resulting in truncated datetime (GH13834)
Merging will now preserve the dtype of the join keys (GH8596)
In [105]: df1 = pd.DataFrame({'key': [1], 'v1': [10]}) In [106]: df1 Out[106]: key v1 0 1 10 [1 rows x 2 columns] In [107]: df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]}) In [108]: df2 Out[108]: key v1 0 1 20 1 2 30 [2 rows x 2 columns]
In [5]: pd.merge(df1, df2, how='outer') Out[5]: key v1 0 1.0 10.0 1 1.0 20.0 2 2.0 30.0 In [6]: pd.merge(df1, df2, how='outer').dtypes Out[6]: key float64 v1 float64 dtype: object
We are able to preserve the join keys
In [109]: pd.merge(df1, df2, how='outer') Out[109]: key v1 0 1 10 1 1 20 2 2 30 [3 rows x 2 columns] In [110]: pd.merge(df1, df2, how='outer').dtypes Out[110]: key int64 v1 int64 Length: 2, dtype: object
Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.
In [111]: pd.merge(df1, df2, how='outer', on='key') Out[111]: key v1_x v1_y 0 1 10.0 20 1 2 NaN 30 [2 rows x 3 columns] In [112]: pd.merge(df1, df2, how='outer', on='key').dtypes Out[112]: key int64 v1_x float64 v1_y int64 Length: 3, dtype: object
Percentile identifiers in the index of a .describe() output will now be rounded to the least precision that keeps them distinct (GH13104)
In [113]: s = pd.Series([0, 1, 2, 3, 4]) In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])
The percentiles were rounded to at most one decimal place, which could raise ValueError for a data frame if the percentiles were duplicated.
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999]) Out[3]: count 5.000000 mean 2.000000 std 1.581139 min 0.000000 0.0% 0.000400 0.1% 0.002000 0.1% 0.004000 50% 2.000000 99.9% 3.996000 100.0% 3.998000 100.0% 3.999600 max 4.000000 dtype: float64 In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999]) Out[4]: ... ValueError: cannot reindex from a duplicate axis
In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999]) Out[115]: count 5.000000 mean 2.000000 std 1.581139 min 0.000000 0.01% 0.000400 0.05% 0.002000 0.1% 0.004000 50% 2.000000 99.9% 3.996000 99.95% 3.998000 99.99% 3.999600 max 4.000000 Length: 12, dtype: float64 In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999]) Out[116]: 0 count 5.000000 mean 2.000000 std 1.581139 min 0.000000 0.01% 0.000400 0.05% 0.002000 0.1% 0.004000 50% 2.000000 99.9% 3.996000 99.95% 3.998000 99.99% 3.999600 max 4.000000 [12 rows x 1 columns]
Furthermore:
Passing duplicated percentiles will now raise a ValueError.
percentiles
Bug in .describe() on a DataFrame with a mixed-dtype column index, which would previously raise a TypeError (GH13288)
TypeError
PeriodIndex now has its own period dtype. The period dtype is a pandas extension dtype like category or the timezone aware dtype (datetime64[ns, tz]) (GH13941). As a consequence of this change, PeriodIndex no longer has an integer dtype:
datetime64[ns, tz]
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D') In [2]: pi Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D') In [3]: pd.api.types.is_integer_dtype(pi) Out[3]: True In [4]: pi.dtype Out[4]: dtype('int64')
In [117]: pi = pd.PeriodIndex(['2016-08-01'], freq='D') In [118]: pi Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]', freq='D') In [119]: pd.api.types.is_integer_dtype(pi) Out[119]: False In [120]: pd.api.types.is_period_dtype(pi) Out[120]: True In [121]: pi.dtype Out[121]: period[D] In [122]: type(pi.dtype) Out[122]: pandas.core.dtypes.dtypes.PeriodDtype
Previously, Period has its own Period('NaT') representation different from pd.NaT. Now Period('NaT') has been changed to return pd.NaT. (GH12759, GH13582)
In [5]: pd.Period('NaT', freq='D') Out[5]: Period('NaT', 'D')
These result in pd.NaT without providing freq option.
freq
In [123]: pd.Period('NaT') Out[123]: NaT In [124]: pd.Period(None) Out[124]: NaT
To be compatible with Period addition and subtraction, pd.NaT now supports addition and subtraction with int. Previously it raised ValueError.
In [5]: pd.NaT + 1 ... ValueError: Cannot add integral value to Timestamp without freq.
In [125]: pd.NaT + 1 Out[125]: NaT In [126]: pd.NaT - 1 Out[126]: NaT
.values is changed to return an array of Period objects, rather than an array of integers (GH13988).
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M') In [7]: pi.values Out[7]: array([492, 493])
In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M') In [128]: pi.values Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)
Addition and subtraction of the base Index type and of DatetimeIndex (not the numeric index types) previously performed set operations (set union and difference). This behavior was already deprecated since 0.15.0 (in favor using the specific .union() and .difference() methods), and is now disabled. When possible, + and - are now used for element-wise operations, for example for concatenating strings or subtracting datetimes (GH8227, GH14127).
.union()
.difference()
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c']) FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union() Out[1]: Index(['a', 'b', 'c'], dtype='object')
New behavior: the same operation will now perform element-wise addition:
In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c']) Out[129]: Index(['aa', 'bc'], dtype='object')
Note that numeric Index objects already performed element-wise operations. For example, the behavior of adding two integer Indexes is unchanged. The base Index is now made consistent with this behavior.
In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4]) Out[130]: Int64Index([3, 5, 7], dtype='int64')
Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:
In [1]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02']) ...: - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])) FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference() Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
In [131]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02']) .....: - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])) .....: Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)
Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as any other values. (GH13514)
Index.symmetric_difference
In [132]: idx1 = pd.Index([1, 2, 3, np.nan]) In [133]: idx2 = pd.Index([0, 1, np.nan])
In [3]: idx1.difference(idx2) Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64') In [4]: idx1.symmetric_difference(idx2) Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
In [134]: idx1.difference(idx2) Out[134]: Float64Index([2.0, 3.0], dtype='float64') In [135]: idx1.symmetric_difference(idx2) Out[135]: Float64Index([0.0, 2.0, 3.0], dtype='float64')
Index.unique() now returns unique values as an Index of the appropriate dtype. (GH13395). Previously, most Index classes returned np.ndarray, and DatetimeIndex, TimedeltaIndex and PeriodIndex returned Index to keep metadata like timezone.
Index.unique()
np.ndarray
TimedeltaIndex
In [1]: pd.Index([1, 2, 3]).unique() Out[1]: array([1, 2, 3]) In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', ...: '2011-01-03'], tz='Asia/Tokyo').unique() Out[2]: DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00', '2011-01-03 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq=None)
In [136]: pd.Index([1, 2, 3]).unique() Out[136]: Int64Index([1, 2, 3], dtype='int64') In [137]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], .....: tz='Asia/Tokyo').unique() .....: Out[137]: DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00', '2011-01-03 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq=None)
MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype in MultiIndex levels (GH13743, GH13854).
MultiIndex.from_arrays
MultiIndex.from_product
In [138]: cat = pd.Categorical(['a', 'b'], categories=list("bac")) In [139]: lvl1 = ['foo', 'bar'] In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1]) In [141]: midx Out[141]: MultiIndex([('a', 'foo'), ('b', 'bar')], )
In [4]: midx.levels[0] Out[4]: Index(['b', 'a', 'c'], dtype='object') In [5]: midx.get_level_values[0] Out[5]: Index(['a', 'b'], dtype='object')
New behavior: the single level is now a CategoricalIndex:
CategoricalIndex
In [142]: midx.levels[0] Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category') In [143]: midx.get_level_values(0) Out[143]: CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
An analogous change has been made to MultiIndex.from_product. As a consequence, groupby and set_index also preserve categorical dtypes in indexes
In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat}) In [145]: df_grouped = df.groupby(by=['A', 'C']).first() In [146]: df_set_idx = df.set_index(['A', 'C'])
In [11]: df_grouped.index.levels[1] Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C') In [12]: df_grouped.reset_index().dtypes Out[12]: A int64 C object B float64 dtype: object In [13]: df_set_idx.index.levels[1] Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C') In [14]: df_set_idx.reset_index().dtypes Out[14]: A int64 C object B int64 dtype: object
In [147]: df_grouped.index.levels[1] Out[147]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, name='C', dtype='category') In [148]: df_grouped.reset_index().dtypes Out[148]: A int64 C category B float64 Length: 3, dtype: object In [149]: df_set_idx.index.levels[1] Out[149]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, name='C', dtype='category') In [150]: df_set_idx.reset_index().dtypes Out[150]: A int64 C category B int64 Length: 3, dtype: object
When read_csv() is called with chunksize=n and without specifying an index, each chunk used to have an independently generated index from 0 to n-1. They are now given instead a progressive index, starting from 0 for the first chunk, from n for the second, and so on, so that, when concatenated, they are identical to the result of calling read_csv() without the chunksize= argument (GH12185).
chunksize=n
0
n-1
n
chunksize=
In [151]: data = 'A,B\n0,1\n2,3\n4,5\n6,7'
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2)) Out[2]: A B 0 0 1 1 2 3 0 4 5 1 6 7
In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2)) Out[152]: A B 0 0 1 1 2 3 2 4 5 3 6 7 [4 rows x 2 columns]
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
Sparse data structures now gained enhanced support of int64 and bool dtype (GH667, GH13849).
Previously, sparse data were float64 dtype by default, even if all inputs were of int or bool dtype. You had to specify dtype explicitly to create sparse data with int64 dtype. Also, fill_value had to be specified explicitly because the default was np.nan which doesn’t appear in int64 or bool data.
float64
fill_value
np.nan
In [1]: pd.SparseArray([1, 2, 0, 0]) Out[1]: [1.0, 2.0, 0.0, 0.0] Fill: nan IntIndex Indices: array([0, 1, 2, 3], dtype=int32) # specifying int64 dtype, but all values are stored in sp_values because # fill_value default is np.nan In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64) Out[2]: [1, 2, 0, 0] Fill: nan IntIndex Indices: array([0, 1, 2, 3], dtype=int32) In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0) Out[3]: [1, 2, 0, 0] Fill: 0 IntIndex Indices: array([0, 1], dtype=int32)
As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64 dtype, False for bool dtype).
In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64) Out[153]: [1, 2, 0, 0] Fill: 0 IntIndex Indices: array([0, 1], dtype=int32) In [154]: pd.SparseArray([True, False, False, False]) Out[154]: [True, False, False, False] Fill: False IntIndex Indices: array([0], dtype=int32)
See the docs for more details.
Sparse data structure now can preserve dtype after arithmetic ops (GH13848)
s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64) s.dtype s + 1
Sparse data structure now support astype to convert internal dtype (GH13900)
astype
s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0) s s.astype(np.int64)
astype fails if data contains values which cannot be converted to specified dtype. Note that the limitation is applied to fill_value which default is np.nan.
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64) Out[7]: ValueError: unable to coerce current fill_value nan to int64 dtype
Subclassed SparseDataFrame and SparseSeries now preserve class types when slicing or transposing. (GH13787)
SparseDataFrame
SparseSeries
SparseArray with bool dtype now supports logical (bool) operators (GH14000)
SparseArray
Bug in SparseSeries with MultiIndex [] indexing may raise IndexError (GH13144)
[]
IndexError
Bug in SparseSeries with MultiIndex [] indexing result may have normal Index (GH13144)
Bug in SparseDataFrame in which axis=None did not default to axis=0 (GH13048)
axis=None
axis=0
Bug in SparseSeries and SparseDataFrame creation with object dtype may raise TypeError (GH11633)
Bug in SparseDataFrame doesn’t respect passed SparseArray or SparseSeries ‘s dtype and fill_value (GH13866)
Bug in SparseArray and SparseSeries don’t apply ufunc to fill_value (GH13853)
Bug in SparseSeries.abs incorrectly keeps negative fill_value (GH13853)
SparseSeries.abs
Bug in single row slicing on multi-type SparseDataFrame s, types were previously forced to float (GH13917)
Bug in SparseSeries slicing changes integer dtype to float (GH8292)
Bug in SparseDataFarme comparison ops may raise TypeError (GH13001)
SparseDataFarme
Bug in SparseDataFarme.isnull raises ValueError (GH8276)
SparseDataFarme.isnull
Bug in SparseSeries representation with bool dtype may raise IndexError (GH13110)
Bug in SparseSeries and SparseDataFrame of bool or int64 dtype may display its values like float64 dtype (GH13110)
Bug in sparse indexing using SparseArray with bool dtype may return incorrect result (GH13985)
Bug in SparseArray created from SparseSeries may lose dtype (GH13999)
Bug in SparseSeries comparison with dense returns normal Series rather than SparseSeries (GH13999)
This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations
Methods such as Index.get_indexer that return an indexer array, coerce that array to a “platform int”, so that it can be directly used in 3rd party library operations like numpy.take. Previously, a platform int was defined as np.int_ which corresponds to a C integer, but the correct type, and what is being used now, is np.intp, which corresponds to the C integer size that can hold a pointer (GH3033, GH13972).
Index.get_indexer
numpy.take
np.int_
np.intp
These types are the same on many platform, but for 64 bit python on Windows, np.int_ is 32 bits, and np.intp is 64 bits. Changing this behavior improves performance for many operations on that platform.
In [1]: i = pd.Index(['a', 'b', 'c']) In [2]: i.get_indexer(['b', 'b', 'c']).dtype Out[2]: dtype('int32')
In [1]: i = pd.Index(['a', 'b', 'c']) In [2]: i.get_indexer(['b', 'b', 'c']).dtype Out[2]: dtype('int64')
Timestamp.to_pydatetime will issue a UserWarning when warn=True, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH14101).
Timestamp.to_pydatetime
UserWarning
warn=True
Series.unique() with datetime and timezone now returns return array of Timestamp with timezone (GH13565).
Series.unique()
Panel.to_sparse() will raise a NotImplementedError exception when called (GH13778).
Panel.to_sparse()
NotImplementedError
Index.reshape() will raise a NotImplementedError exception when called (GH12882).
Index.reshape()
.filter() enforces mutual exclusion of the keyword arguments (GH12399).
.filter()
eval’s upcasting rules for float32 types have been updated to be more consistent with NumPy’s rules. New behavior will not upcast to float64 if you multiply a pandas float32 object by a scalar float64 (GH12388).
eval
float32
An UnsupportedFunctionCall error is now raised if NumPy ufuncs like np.mean are called on groupby or resample objects (GH12811).
UnsupportedFunctionCall
np.mean
__setitem__ will no longer apply a callable rhs as a function instead of storing it. Call where directly to get the previous behavior (GH13299).
__setitem__
where
Calls to .sample() will respect the random seed set via numpy.random.seed(n) (GH13161)
.sample()
numpy.random.seed(n)
Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the output shape must be identical. For axis=None, the output must be a DataFrame with identical columns and index labels (GH13222).
Styler.apply
axis=1
Float64Index.astype(int) will now raise ValueError if Float64Index contains NaN values (GH13149)
Float64Index.astype(int)
Float64Index
TimedeltaIndex.astype(int) and DatetimeIndex.astype(int) will now return Int64Index instead of np.array (GH13209)
TimedeltaIndex.astype(int)
DatetimeIndex.astype(int)
Int64Index
np.array
Passing Period with multiple frequencies to normal Index now returns Index with object dtype (GH13664)
PeriodIndex.fillna with Period has different freq now coerces to object dtype (GH13664)
PeriodIndex.fillna
Faceted boxplots from DataFrame.boxplot(by=col) now return a Series when return_type is not None. Previously these returned an OrderedDict. Note that when return_type=None, the default, these still return a 2-D NumPy array (GH12216, GH7096).
DataFrame.boxplot(by=col)
return_type
return_type=None
pd.read_hdf will now raise a ValueError instead of KeyError, if a mode other than r, r+ and a is supplied. (GH13623)
pd.read_hdf
KeyError
r
r+
pd.read_csv(), pd.read_table(), and pd.read_hdf() raise the builtin FileNotFoundError exception for Python 3.x when called on a nonexistent file; this is back-ported as IOError in Python 2.x (GH14086)
pd.read_table()
pd.read_hdf()
FileNotFoundError
IOError
More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of CParserError (GH13652).
CParserError
pd.read_csv() in the C engine will now issue a ParserWarning or raise a ValueError when sep encoded is more than one character long (GH14065)
ParserWarning
sep
DataFrame.values will now return float64 with a DataFrame of mixed int64 and uint64 dtypes, conforming to np.find_common_type (GH10364, GH13917)
DataFrame.values
uint64
np.find_common_type
.groupby.groups will now return a dictionary of Index objects, rather than a dictionary of np.ndarray or lists (GH14293)
.groupby.groups
lists
Series.reshape and Categorical.reshape have been deprecated and will be removed in a subsequent release (GH12882, GH12882)
Series.reshape
Categorical.reshape
PeriodIndex.to_datetime has been deprecated in favor of PeriodIndex.to_timestamp (GH8254)
PeriodIndex.to_datetime
PeriodIndex.to_timestamp
Timestamp.to_datetime has been deprecated in favor of Timestamp.to_pydatetime (GH8254)
Timestamp.to_datetime
Index.to_datetime and DatetimeIndex.to_datetime have been deprecated in favor of pd.to_datetime (GH8254)
Index.to_datetime
DatetimeIndex.to_datetime
pd.to_datetime
pandas.core.datetools module has been deprecated and will be removed in a subsequent release (GH14094)
pandas.core.datetools
SparseList has been deprecated and will be removed in a future version (GH13784)
SparseList
DataFrame.to_html() and DataFrame.to_latex() have dropped the colSpace parameter in favor of col_space (GH13857)
DataFrame.to_html()
DataFrame.to_latex()
colSpace
col_space
DataFrame.to_sql() has deprecated the flavor parameter, as it is superfluous when SQLAlchemy is not installed (GH13611)
flavor
Deprecated read_csv keywords:
compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320)
compact_ints
use_unsigned
buffer_lines has been deprecated and will be removed in a future version (GH13360)
buffer_lines
as_recarray has been deprecated and will be removed in a future version (GH13373)
as_recarray
skip_footer has been deprecated in favor of skipfooter and will be removed in a future version (GH13349)
skip_footer
skipfooter
top-level pd.ordered_merge() has been renamed to pd.merge_ordered() and the original name will be removed in a future version (GH13358)
pd.ordered_merge()
pd.merge_ordered()
Timestamp.offset property (and named arg in the constructor), has been deprecated in favor of freq (GH12160)
Timestamp.offset
pd.tseries.util.pivot_annual is deprecated. Use pivot_table as alternative, an example is here (GH736)
pd.tseries.util.pivot_annual
pivot_table
pd.tseries.util.isleapyear has been deprecated and will be removed in a subsequent release. Datetime-likes now have a .is_leap_year property (GH13727)
pd.tseries.util.isleapyear
Panel4D and PanelND constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a to_xarray() method to automate this conversion (GH13564).
to_xarray()
pandas.tseries.frequencies.get_standard_freq is deprecated. Use pandas.tseries.frequencies.to_offset(freq).rule_code instead (GH13874)
pandas.tseries.frequencies.get_standard_freq
pandas.tseries.frequencies.to_offset(freq).rule_code
pandas.tseries.frequencies.to_offset’s freqstr keyword is deprecated in favor of freq (GH13874)
pandas.tseries.frequencies.to_offset
freqstr
Categorical.from_array has been deprecated and will be removed in a future version (GH13854)
Categorical.from_array
The SparsePanel class has been removed (GH13778)
SparsePanel
The pd.sandbox module has been removed in favor of the external library pandas-qt (GH13670)
pd.sandbox
pandas-qt
The pandas.io.data and pandas.io.wb modules are removed in favor of the pandas-datareader package (GH13724).
The pandas.tools.rplot module has been removed in favor of the seaborn package (GH13855)
DataFrame.to_csv() has dropped the engine parameter, as was deprecated in 0.17.1 (GH11274, GH13419)
DataFrame.to_csv()
engine
DataFrame.to_dict() has dropped the outtype parameter in favor of orient (GH13627, GH8486)
DataFrame.to_dict()
outtype
orient
pd.Categorical has dropped setting of the ordered attribute directly in favor of the set_ordered method (GH13671)
pd.Categorical
ordered
set_ordered
pd.Categorical has dropped the levels attribute in favor of categories (GH8376)
levels
DataFrame.to_sql() has dropped the mysql option for the flavor parameter (GH13611)
mysql
Panel.shift() has dropped the lags parameter in favor of periods (GH14041)
Panel.shift()
lags
periods
pd.Index has dropped the diff method in favor of difference (GH13669)
pd.Index
diff
difference
pd.DataFrame has dropped the to_wide method in favor of to_panel (GH14039)
pd.DataFrame
to_wide
to_panel
Series.to_csv has dropped the nanRep parameter in favor of na_rep (GH13804)
Series.to_csv
nanRep
na_rep
Series.xs, DataFrame.xs, Panel.xs, Panel.major_xs, and Panel.minor_xs have dropped the copy parameter (GH13781)
Series.xs
DataFrame.xs
Panel.xs
Panel.major_xs
Panel.minor_xs
str.split has dropped the return_type parameter in favor of expand (GH13701)
str.split
expand
Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH13590, GH13868). Now legacy time rules raises ValueError. For the list of currently supported offsets, see here.
The default value for the return_type parameter for DataFrame.plot.box and DataFrame.boxplot changed from None to "axes". These methods will now return a matplotlib axes by default instead of a dictionary of artists. See here (GH6581).
DataFrame.plot.box
DataFrame.boxplot
None
"axes"
The tquery and uquery functions in the pandas.io.sql module are removed (GH5950).
tquery
uquery
pandas.io.sql
Improved performance of sparse IntIndex.intersect (GH13082)
IntIndex.intersect
Improved performance of sparse arithmetic with BlockIndex when the number of blocks are large, though recommended to use IntIndex in such cases (GH13082)
BlockIndex
IntIndex
Improved performance of DataFrame.quantile() as it now operates per-block (GH11623)
DataFrame.quantile()
Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH13166, GH13334)
Improved performance of DataFrameGroupBy.transform (GH12737)
DataFrameGroupBy.transform
Improved performance of Index and Series .duplicated (GH10235)
.duplicated
Improved performance of Index.difference (GH12044)
Improved performance of RangeIndex.is_monotonic_increasing and is_monotonic_decreasing (GH13749)
RangeIndex.is_monotonic_increasing
is_monotonic_decreasing
Improved performance of datetime string parsing in DatetimeIndex (GH13692)
Improved performance of hashing Period (GH12817)
Improved performance of factorize of datetime with timezone (GH13750)
factorize
Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266)
Improved performance of groupby.groups (GH14293)
groupby.groups
Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH14308)
Bug in groupby().shift(), which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH13813)
groupby().shift()
Bug in groupby().cumsum() calculating cumprod when axis=1. (GH13994)
groupby().cumsum()
cumprod
Bug in pd.to_timedelta() in which the errors parameter was not being respected (GH13613)
pd.to_timedelta()
Bug in io.json.json_normalize(), where non-ascii keys raised an exception (GH13213)
io.json.json_normalize()
Bug when passing a not-default-indexed Series as xerr or yerr in .plot() (GH11858)
xerr
yerr
.plot()
Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH9161, GH13544)
Bug in DataFrame assignment with an object-dtyped Index where the resultant column is mutable to the original object. (GH13522)
Bug in matplotlib AutoDataFormatter; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH13131)
AutoDataFormatter
Bug in selection from a HDFStore with a fixed format and start and/or stop specified will now return the selected range (GH8287)
HDFStore
start
stop
Bug in Categorical.from_codes() where an unhelpful error was raised when an invalid ordered parameter was passed in (GH14058)
Categorical.from_codes()
Bug in Series construction from a tuple of integers on windows not returning default dtype (int64) (GH13646)
Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow was not being caught (GH14068)
Bug in .groupby(..).resample(..) when the same object is called multiple times (GH13174)
.groupby(..).resample(..)
Bug in .to_records() when index name is a unicode string (GH13172)
.to_records()
Bug in calling .memory_usage() on object which doesn’t implement (GH12924)
.memory_usage()
Regression in Series.quantile with nans (also shows up in .median() and .describe() ); furthermore now names the Series with the quantile (GH13098, GH13146)
Series.quantile
.median()
Bug in SeriesGroupBy.transform with datetime values and missing groups (GH13191)
SeriesGroupBy.transform
Bug where empty Series were incorrectly coerced in datetime-like numeric operations (GH13844)
Bug in Categorical constructor when passed a Categorical containing datetimes with timezones (GH14190)
Bug in Series.str.extractall() with str index raises ValueError (GH13156)
Series.str.extractall()
str
Bug in Series.str.extractall() with single group and quantifier (GH13382)
Bug in DatetimeIndex and Period subtraction raises ValueError or AttributeError rather than TypeError (GH13078)
Bug in Index and Series created with NaN and NaT mixed data may not have datetime64 dtype (GH13324)
datetime64
Bug in Index and Series may ignore np.datetime64('nat') and np.timdelta64('nat') to infer dtype (GH13324)
np.datetime64('nat')
np.timdelta64('nat')
Bug in PeriodIndex and Period subtraction raises AttributeError (GH13071)
Bug in PeriodIndex construction returning a float64 index in some circumstances (GH13067)
Bug in .resample(..) with a PeriodIndex not changing its freq appropriately when empty (GH13067)
.resample(..)
Bug in .resample(..) with a PeriodIndex not retaining its type or name with an empty DataFrame appropriately when empty (GH13212)
Bug in groupby(..).apply(..) when the passed function returns scalar values per group (GH13468).
groupby(..).apply(..)
Bug in groupby(..).resample(..) where passing some keywords would raise an exception (GH13235)
groupby(..).resample(..)
Bug in .tz_convert on a tz-aware DateTimeIndex that relied on index being sorted for correct results (GH13306)
.tz_convert
DateTimeIndex
Bug in .tz_localize with dateutil.tz.tzlocal may return incorrect result (GH13583)
.tz_localize
dateutil.tz.tzlocal
Bug in DatetimeTZDtype dtype with dateutil.tz.tzlocal cannot be regarded as valid dtype (GH13583)
DatetimeTZDtype
Bug in pd.read_hdf() where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)
Bug in .rolling() that allowed a negative integer window in construction of the Rolling() object, but would later fail on aggregation (GH13383)
Rolling()
Bug in Series indexing with tuple-valued data and a numeric index (GH13509)
Bug in printing pd.DataFrame where unusual elements with the object dtype were causing segfaults (GH13717)
Bug in ranking Series which could result in segfaults (GH13445)
Bug in various index types, which did not propagate the name of passed index (GH12309)
Bug in DatetimeIndex, which did not honour the copy=True (GH13205)
copy=True
Bug in DatetimeIndex.is_normalized returns incorrectly for normalized date_range in case of local timezones (GH13459)
DatetimeIndex.is_normalized
Bug in pd.concat and .append may coerces datetime64 and timedelta to object dtype containing python built-in datetime or timedelta rather than Timestamp or Timedelta (GH13626)
pd.concat
.append
timedelta
datetime
Timedelta
Bug in PeriodIndex.append may raises AttributeError when the result is object dtype (GH13221)
PeriodIndex.append
Bug in CategoricalIndex.append may accept normal list (GH13626)
CategoricalIndex.append
list
Bug in pd.concat and .append with the same timezone get reset to UTC (GH7795)
Bug in Series and DataFrame .append raises AmbiguousTimeError if data contains datetime near DST boundary (GH13626)
AmbiguousTimeError
Bug in DataFrame.to_csv() in which float values were being quoted even though quotations were specified for non-numeric values only (GH12922, GH13259)
Bug in DataFrame.describe() raising ValueError with only boolean columns (GH13898)
DataFrame.describe()
Bug in MultiIndex slicing where extra elements were returned when level is non-unique (GH12896)
Bug in .str.replace does not raise TypeError for invalid replacement (GH13438)
.str.replace
Bug in MultiIndex.from_arrays which didn’t check for input array lengths matching (GH13599)
Bug in cartesian_product and MultiIndex.from_product which may raise with empty input arrays (GH12258)
cartesian_product
Bug in pd.read_csv() which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH13703)
Bug in pd.read_csv() which caused errors to be raised when a dictionary containing scalars is passed in for na_values (GH12224)
Bug in pd.read_csv() which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)
Bug in pd.read_csv() with engine='python' which raised errors when a numpy array was passed in for usecols (GH12546)
usecols
Bug in pd.read_csv() where the index columns were being incorrectly parsed when parsed as dates with a thousands parameter (GH14066)
thousands
Bug in pd.read_csv() with engine='python' in which NaN values weren’t being detected after data was converted to numeric values (GH13314)
Bug in pd.read_csv() in which the nrows argument was not properly validated for both engines (GH10476)
nrows
Bug in pd.read_csv() with engine='python' in which infinities of mixed-case forms were not being interpreted properly (GH13274)
Bug in pd.read_csv() with engine='python' in which trailing NaN values were not being parsed (GH13320)
Bug in pd.read_csv() with engine='python' when reading from a tempfile.TemporaryFile on Windows with Python 3 (GH13398)
tempfile.TemporaryFile
Bug in pd.read_csv() that prevents usecols kwarg from accepting single-byte unicode strings (GH13219)
Bug in pd.read_csv() that prevents usecols from being an empty set (GH13402)
Bug in pd.read_csv() in the C engine where the NULL character was not being parsed as NULL (GH14012)
Bug in pd.read_csv() with engine='c' in which NULL quotechar was not accepted even though quoting was specified as None (GH13411)
engine='c'
quotechar
quoting
Bug in pd.read_csv() with engine='c' in which fields were not properly cast to float when quoting was specified as non-numeric (GH13411)
Bug in pd.read_csv() in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)
Bug in pd.read_csv(), where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH13549)
Bug in pd.read_csv, pd.read_table, pd.read_fwf, pd.read_stata and pd.read_sas where files were opened by parsers but not closed if both chunksize and iterator were None. (GH13940)
pd.read_csv
pd.read_table
pd.read_fwf
pd.read_stata
pd.read_sas
chunksize
iterator
Bug in StataReader, StataWriter, XportReader and SAS7BDATReader where a file was not properly closed when an error was raised. (GH13940)
XportReader
SAS7BDATReader
Bug in pd.pivot_table() where margins_name is ignored when aggfunc is a list (GH13354)
pd.pivot_table()
margins_name
aggfunc
Bug in pd.Series.str.zfill, center, ljust, rjust, and pad when passing non-integers, did not raise TypeError (GH13598)
pd.Series.str.zfill
center
ljust
rjust
pad
Bug in checking for any null objects in a TimedeltaIndex, which always returned True (GH13603)
True
Bug in Series arithmetic raises TypeError if it contains datetime-like as object dtype (GH13043)
Bug Series.isnull() and Series.notnull() ignore Period('NaT') (GH13737)
Series.isnull()
Series.notnull()
Bug Series.fillna() and Series.dropna() don’t affect to Period('NaT') (GH13737
Series.fillna()
Series.dropna()
Bug in .fillna(value=np.nan) incorrectly raises KeyError on a category dtyped Series (GH14021)
.fillna(value=np.nan)
Bug in extension dtype creation where the created types were not is/identical (GH13285)
Bug in .resample(..) where incorrect warnings were triggered by IPython introspection (GH13618)
Bug in NaT - Period raises AttributeError (GH13071)
Bug in Series comparison may output incorrect result if rhs contains NaT (GH9005)
Bug in Series and Index comparison may output incorrect result if it contains NaT with object dtype (GH13592)
Bug in Period addition raises TypeError if Period is on right hand side (GH13069)
Bug in Period and Series or Index comparison raises TypeError (GH13200)
Bug in pd.set_eng_float_format() that would prevent NaN and Inf from formatting (GH11981)
pd.set_eng_float_format()
Bug in .unstack with Categorical dtype resets .ordered to True (GH13249)
.unstack
.ordered
Clean some compile time warnings in datetime parsing (GH13607)
Bug in factorize raises AmbiguousTimeError if data contains datetime near DST boundary (GH13750)
Bug in .set_index raises AmbiguousTimeError if new index contains DST boundary and multi levels (GH12920)
.set_index
Bug in .shift raises AmbiguousTimeError if data contains datetime near DST boundary (GH13926)
.shift
Bug in pd.read_hdf() returns incorrect result when a DataFrame with a categorical column and a query which doesn’t match any values (GH13792)
categorical
Bug in .iloc when indexing with a non lexsorted MultiIndex (GH13797)
.iloc
Bug in .loc when indexing with date strings in a reverse sorted DatetimeIndex (GH14316)
.loc
Bug in Series comparison operators when dealing with zero dim NumPy arrays (GH13006)
Bug in .combine_first may return incorrect dtype (GH7630, GH10567)
.combine_first
Bug in groupby where apply returns different result depending on whether first result is None or not (GH12824)
apply
Bug in groupby(..).nth() where the group key is included inconsistently if called after .head()/.tail() (GH12839)
groupby(..).nth()
.head()/.tail()
Bug in .to_html, .to_latex and .to_string silently ignore custom datetime formatter passed through the formatters key word (GH10690)
.to_html
.to_latex
.to_string
formatters
Bug in DataFrame.iterrows(), not yielding a Series subclasse if defined (GH13977)
DataFrame.iterrows()
Bug in pd.to_numeric when errors='coerce' and input contains non-hashable objects (GH13324)
pd.to_numeric
Bug in invalid Timedelta arithmetic and comparison may raise ValueError rather than TypeError (GH13624)
Bug in invalid datetime parsing in to_datetime and DatetimeIndex may raise TypeError rather than ValueError (GH11169, GH11287)
to_datetime
Bug in Index created with tz-aware Timestamp and mismatched tz option incorrectly coerces timezone (GH13692)
tz
Bug in DatetimeIndex with nanosecond frequency does not include timestamp specified with end (GH13672)
end
Bug in `Series when setting a slice with a np.timedelta64 (GH14155)
`Series
np.timedelta64
Bug in Index raises OutOfBoundsDatetime if datetime exceeds datetime64[ns] bounds, rather than coercing to object dtype (GH13663)
OutOfBoundsDatetime
Bug in Index may ignore specified datetime64 or timedelta64 passed as dtype (GH13981)
timedelta64
Bug in RangeIndex can be created without no arguments rather than raises TypeError (GH13793)
RangeIndex
Bug in .value_counts() raises OutOfBoundsDatetime if data exceeds datetime64[ns] bounds (GH13663)
.value_counts()
Bug in DatetimeIndex may raise OutOfBoundsDatetime if input np.datetime64 has other unit than ns (GH9114)
np.datetime64
Bug in Series creation with np.datetime64 which has other unit than ns as object dtype results in incorrect values (GH13876)
Bug in resample with timedelta data where data was casted to float (GH13119).
resample
Bug in pd.isnull() pd.notnull() raise TypeError if input datetime-like has other unit than ns (GH13389)
pd.isnull()
pd.notnull()
Bug in pd.merge() may raise TypeError if input datetime-like has other unit than ns (GH13389)
pd.merge()
Bug in HDFStore/read_hdf() discarded DatetimeIndex.name if tz was set (GH13884)
read_hdf()
DatetimeIndex.name
Bug in Categorical.remove_unused_categories() changes .codes dtype to platform int (GH13261)
Categorical.remove_unused_categories()
.codes
Bug in groupby with as_index=False returns all NaN’s when grouping on multiple columns including a categorical one (GH13204)
as_index=False
Bug in df.groupby(...)[...] where getitem with Int64Index raised an error (GH13731)
df.groupby(...)[...]
Bug in the CSS classes assigned to DataFrame.style for index names. Previously they were assigned "col_heading level<n> col<c>" where n was the number of levels + 1. Now they are assigned "index_name level<n>", where n is the correct level for that MultiIndex.
"col_heading level<n> col<c>"
"index_name level<n>"
Bug where pd.read_gbq() could throw ImportError: No module named discovery as a result of a naming conflict with another python package called apiclient (GH13454)
pd.read_gbq()
ImportError: No module named discovery
Bug in Index.union returns an incorrect result with a named empty index (GH13432)
Index.union
Bugs in Index.difference and DataFrame.join raise in Python3 when using mixed-integer indexes (GH13432, GH12814)
DataFrame.join
Bug in subtract tz-aware datetime.datetime from tz-aware datetime64 series (GH14088)
datetime.datetime
Bug in .to_excel() when DataFrame contains a MultiIndex which contains a label with a NaN value (GH13511)
.to_excel()
Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise ValueError (GH13930)
Bug in concat and groupby for hierarchical frames with RangeIndex levels (GH13542).
Bug in Series.str.contains() for Series containing only NaN values of object dtype (GH14171)
Series.str.contains()
Bug in agg() function on groupby dataframe changes dtype of datetime64[ns] column to float64 (GH12821)
agg()
Bug in using NumPy ufunc with PeriodIndex to add or subtract integer raise IncompatibleFrequency. Note that using standard operator like + or - is recommended, because standard operators use more efficient path (GH13980)
IncompatibleFrequency
Bug in operations on NaT returning float instead of datetime64[ns] (GH12941)
float
Bug in Series flexible arithmetic methods (like .add()) raises ValueError when axis=None (GH13894)
.add()
Bug in DataFrame.to_csv() with MultiIndex columns in which a stray empty line was added (GH6618)
Bug in DatetimeIndex, TimedeltaIndex and PeriodIndex.equals() may return True when input isn’t Index but contains the same values (GH13107)
PeriodIndex.equals()
Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH14146)
Bug in pd.eval() and HDFStore query truncating long float literals with python 2 (GH14241)
pd.eval()
Bug in Index raises KeyError displaying incorrect column when column is not in the df and columns contains duplicate values (GH13822)
Bug in Period and PeriodIndex creating wrong dates when frequency has combined offset aliases (GH13874)
Bug in .to_string() when called with an integer line_width and index=False raises an UnboundLocalError exception because idx referenced before assignment.
.to_string()
line_width
index=False
idx
Bug in eval() where the resolvers argument would not accept a list (GH14095)
eval()
resolvers
Bugs in stack, get_dummies, make_axis_dummies which don’t preserve categorical dtypes in (multi)indexes (GH13854)
stack
make_axis_dummies
PeriodIndex can now accept list and array which contains pd.NaT (GH13430)
array
Bug in df.groupby where .median() returns arbitrary values if grouped dataframe contains empty bins (GH13629)
df.groupby
Bug in Index.copy() where name parameter was ignored (GH14302)
Index.copy()
name
A total of 117 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Adrien Emery +
Alex Alekseyev
Alex Vig +
Allen Riddell +
Amol +
Amol Agrawal +
Andy R. Terrel +
Anthonios Partheniou
Ben Kandel +
Bob Baxley +
Brett Rosen +
Camilo Cota +
Chris
Chris Grinolds
Chris Warth
Christian Hudon
Christopher C. Aycock
Daniel Siladji +
Douglas McNeil
Drewrey Lupton +
Eduardo Blancas Reyes +
Elliot Marsden +
Evan Wright
Felix Marczinowski +
Francis T. O’Donovan
Geraint Duck +
Giacomo Ferroni +
Grant Roch +
Gábor Lipták
Haleemur Ali +
Hassan Shamim +
Iulius Curt +
Ivan Nazarov +
Jeff Reback
Jeffrey Gerard +
Jenn Olsen +
Jim Crist
Joe Jevnik
John Evans +
John Freeman
John Liekezer +
John W. O’Brien
John Zwinck +
Johnny Gill +
Jordan Erenrich +
Joris Van den Bossche
Josh Howes +
Jozef Brandys +
Ka Wo Chen
Kamil Sindi +
Kerby Shedden
Kernc +
Kevin Sheppard
Matthieu Brucher +
Maximilian Roos
Michael Scherer +
Mike Graham +
Mortada Mehyar
Muhammad Haseeb Tariq +
Nate George +
Neil Parley +
Nicolas Bonnotte
OXPHOS
Pan Deng / Zora +
Paul +
Paul Mestemaker +
Pauli Virtanen
Pawel Kordek +
Pietro Battiston
Piotr Jucha +
Ravi Kumar Nimmi +
Robert Gieseke
Robert Kern +
Roger Thomas
Roy Keyes +
Russell Smith +
Sahil Dua +
Sanjiv Lobo +
Sašo Stanovnik +
Shawn Heide +
Sinhrks
Stephen Kappel +
Steve Choi +
Stewart Henderson +
Sudarshan Konge +
Thomas A Caswell
Tom Augspurger
Tom Bird +
Uwe Hoffmann +
WillAyd +
Xiang Zhang +
YG-Riku +
Yadunandan +
Yaroslav Halchenko
Yuichiro Kaneko +
adneu
agraboso +
babakkeyvani +
c123w +
chris-b1
cmazzullo +
conquistador1492 +
cr3 +
dsm054
gfyoung
harshul1610 +
iamsimha +
jackieleng +
mpuels +
pijucha +
priyankjain +
sinhrks
wcwagner +
yui-knk +
zhangjinjie +
znmean +
颜发才(Yan Facai) +